C13 to C15: Groups, rates and heat changes Knowledge Organiser

Lesson sequence

- 1. Group 1
- 2. Group 7
- 3. Reactivity of halogens
- 4. Group 0
- 5. Rates of reaction
- 6. Collision theory
- 7. Core practical rates of reaction (CP11)
- 8. Catalysts
- 9. Exothermic and endothermic reactions
- 10. Explaining energy changes

	1. Group 1
*Alkali	The name of the metals in group 1
metals	 lithium, sodium, potassium and
	so on.
*Group 1	Li – lithium
symbols	Na – sodium
	K – potassium
**Reaction	Metal + water → metal hydroxide
of alkali	+ hydrogen
metals with	
water	E.g:
	sodium + water → sodium
	hydroxide + hydrogen
	2Na + 2H2O → 2NaOH + H2
**Lithium	Lithium floats and bubble
and water	vigorously
**Sodium	Sodium melts into a ball and
and water	moves around the surface
	bubbling vigorously.
**Potassium	Potassium melts into a ball,
and water	catches fire (lilac) and moves
	around the surface bubbling
	vigorously.
*Group 1	Reactivity increases as you move
reactivity	down the group.

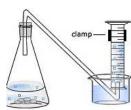
**Explaining	When metals react they lose their outer electrons. Further down the group there are more shells of electrons so the outer electrons are less attracted to the nucleus
group 1	outer electrons. Further down the
reactivity	group there are more shells of
	electrons so the outer electrons
	are less attracted to the nucleus
	and easier to remove.

2. Group 7	
*Halogens	The names given to the non-metals
	in group 7 – fluorine, chlorine,
	bromine and iodine.
*Chlorine	Cl ₂ . A pale green gas.
*Bromine	Br ₂ . A red-brown liquid.
*lodine	I ₂ . A shiny purple-black solid.
**Reaction	Halogen + metal → metal halide
of	
halogens	E.g:
with	Bromine + sodium → sodium
metals	bromide
	Br₂ + 2Na → 2NaBr
**Reaction	Halogen + hydrogen → hydrogen
of	halide
halogens	
with	E.g:
hydrogen	Chlorine + hydrogen → hydrogen
	chloride
	$Cl_2 + H_2 \rightarrow 2HCl$
*Hydrogen	Hydrogen halides dissolve in water
halides	to form acids, for example hydrogen
	chloride makes hydrochloric acid.
*Chlorine	Chlorine gas turns damp blue litmus
test	red then quickly bleaches it white.

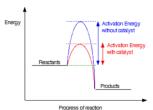
3. R	3. Reactivity of halogens	
*Group 7	Reactivity increases as you go	
reactivity	up the group.	
**Explaining	When non-metals react they	
group 7	complete their outer shells.	
reactivity	Further up the group the	
	elements have fewer shells so	
	the nucleus attracts electrons	
	more strongly.	

**Displacement	Reactions in which a more
reactions	reactive metal displaces a less
	reactive metal from a salt eg:
	copper sulfate + zinc → zinc
	sulfate + copper
	Does not work backwards as
	copper is less reactive than
	zinc.
**Displacement	A more reactive halogen
reactions of	displaces a less reactive halide
halogens	ion by taking its electrons.
	E.g: bromine + sodium iodide → iodine + sodium bromide
***Redox	The more reactive halogen
reactions of	oxidises the less reactive halide
halogens	by taking its electrons. The
	more reactive halogen is
	reduced.
	E.g:
	$Br_2 + 2l^- \rightarrow 2Br^- + l_2$

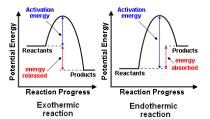
4. Group 0
The name given to the non-metals
in group 0 – helium, neon, argon,
krypton and xenon.
They are all gases at room
temperature but the melting and
boiling point increase down the
group.
The noble gases do not (easily) do
any reactions – they are inert.
When elements react they try to
complete their outer shells.
Because group 0's outer shells are
already complete, they do not
react.
-Helium is used in airships because
it is inert and has low density
- Argon is used in fire extinguishers
because it is inert and denser than
air.
- Neon is used in lighting because
it glows red when electricity is
passed through it.


	5. Rates of reaction
*Rate of	The rate at which reactants are
reaction	used up or products are made.
*Reactants	Starts high and curves downward,
vs time	decreasing rapidly at first and
graph	then more gently. Steeper line =
	faster rate.
*Products vs	Starts low and curves upwards,
time graph	increasing rapidly at first and then
	more gently. Steeper line = faster
	rate.
**Measuring	- Collect gas in a gas syringe and
rates –	measure the volume every 30
reactions	secs.
that produce	- Collect gas over water (up-
gas	turned measuring cylinder full of
	water) and measure volume every
	30 secs.
	- Do reaction on a balance and
	record the change in mass every
	30 secs.
**Measuring	Do the reaction in a beaker placed
rates –	on piece of paper with a cross
reactions	marked on it. Looking down
that go	through the beaker, time how it
cloudy	takes for the cross to disappear.

	6. Collision theory
*Collision	States that for two particles to
theory	react they must:
	- Collide with each other
	- Collide with enough energy to
	react
*Activation	The minimum energy that two
energy	particles must have when they
	collide in order to react.
**Effect of	Increasing the concentration
concentration	increases the rate because there
on rate	are more particles so there are
	more collisions and more
	reactions.
**Effect of	Increasing the surface area (by
surface area	decreasing particle sizes) in
on rate	creases the rate by exposing
	more particles to collisions
	leading to more collisions and
	more reactions.


**Effect of	Increasing the pressure increases
pressure on	the rate because particles are
rate	pushed closer together so they
	collide more often.
**Effect of	Increasing the temperature
temperature	increases the rate because
on rate	particles move faster so they
	collide more, and collide with
	more energy to a greater
	proportion of collisions lead to
	reactions.

7. Core prac	tical – rates of reaction (CP11)
*CP11 – Aim	To explore the rate of two
	reactions by collecting gas and
	observing a colour change.
*CP11 – Gas	Place a measuring cylinder full
collection –	of water upside down in a basin
setup	of water. Place 5 g of marble
	chips in a conical flask with 40
	cm ³ hydrochloric acid. Insert a
	bung with delivery tube and
	insert the delivery tube into the
	measuring cylinder.
*CP11 – Gas	Record the volume of gas
collection -	collected every 15 seconds until
measurements	it stops.
*CP11 – Gas	Repeat with a different size of
collection –	marble chips.
variations	
*CP11 – Gas	The amount of gas collected
collection –	increases quickly at first and
results	then more slowly. The smaller
	marble chips produce gas more
	quickly, but the same amount in
	total.
*CP11 -	Draw a cross on a piece of paper
Colour change	and place a beaker on it.
– setup	Measure out 50 cm ³ of sodium
	thiosulfate solution and 5 cm ³ of
	hydrochloric acid into two test
	tubes and leave to warm in a
	water bath at 30°C.


-	
*CP11 -	Quickly pour both test tubes
Colour change	into the beaker, mix and start
– run the	the stopwatch. Looking down
experiment	through the beaker, stop when
	you can no longer see the cross.
*CP11 -	Repeat with water baths set to
Colour change	35°C, 40°C, 45°C and 50°C.
variations	
*CP11 -	The cross disappears most
Colour change	quickly at 50°C and least quickly
– results	at 30°C.

	8. Catalyst
*Catalyst	A substance that speeds up a
	chemical reaction without being
	used up.
**Effect of	Catalysts increase the rate of
catalysts	reaction by reducing the activation
on rate	energy so that a greater proportion
	of collisions lead to reactions.
**Reaction	A graph that shows the changes in
profile	energy during a reaction. Starts with
	large 'hump' that represents the
	activation energy.
**Effect of	The 'hump' representing the
catalysts	activation energy is smaller.
on	
reaction	
profiles	
*Enzyme	A protein that works as a catalyst to
	speed up the reactions in our cells.
*Enzymes	Alcoholic drinks are produced using
in alcohol	enzymes found in yeast which
production	catalyse a reaction that turns
	glucose into ethanol.

9. Endothermic and exothermic reactions					
*Exothermic	A reaction that transfers energy				
reaction	to the surroundings (gets				
	hotter).				
*Exothermic	- Neutralisation				
reaction	- Displacement				
examples	- Combustion				
	- Some precipitation				
	- Respiration				
*Endothermic	A reaction that absorbs energy				
reaction	from the surroundings (gets				
	colder)				
*Endothermic	- Dissolving (most) salts				
reaction	- Some precipitation				
examples	- Photosynthesis				
**Exothermic	The reactants have more energy				
reaction	than the products, so their line				
profile	on the graph is higher.				
**Endothermic	The reactants have less energy				
reaction	than the products, so their line				
profile	on the graph is lower.				
**Measuring	-Sit a polystyrene beaker inside				
energy	a glass beaker (insulation)				
changes	- Measure the starting				
	temperature of the reactants.				
	- Mix the reactants in the				
	polystyrene beaker				
	- Cover with lid fitted with a				
	thermometer				
	- Monitor and record the lowest				
	temperature.				
L	1 755 5				

10. Explaining energy changes				
**Chemical	During chemical reactions, old			
bonds in	chemical bonds are broken and			
reactions	new ones are formed.			
**Breaking	Breaking bonds absorbs energy,			
bonds	breaking stronger bonds			
	absorbs more energy.			
**Making	Making bonds releases energy,			
bonds	making stronger bonds releases			
	more energy.			
**Energy	The energy change in a reaction			
changes and	is the difference between the			
bond	energy required to break the			
formation	old bonds and the energy			
	released by making the new			
	ones.			
**Exothermic	Exothermic reactions break			
reactions and	weaker bonds and make			
bonds	stronger ones.			
**Endothermic	Endothermic reactions break			
reactions and	stronger bonds and make			
bonds	weaker ones.			
***Bond	The energy required to break			
strength	one mole of a particular			
	covalent bond in kJ/mol.			
***Calculating	Add up the total strength of old			
energy	bonds broken and subtract the			
changes from	total strength of new bonds			
bond strengths	made. A negative answer is			
	exothermic.			

***Energy change example:

Hydrogen and chlorine react to form hydrogen chloride. The bond strengths are as follows: H-H = 436 kJ/mol, Cl-Cl = 240 kJ/mol , H-Cl = 428 kJ/mol. Calculate the energy change of the reaction

$$H-H + CI-CI \rightarrow 2(H-CI)$$

Bonds broken = 436 + 240 = 676 **Bonds made** = 2 x 428 = 856

Reaction energy = 676 - 856 = -180 kJ/mol, the reaction is exothermic because the answet is negative.